Amazon Neptune simplifies graph analytics and machine learning workflows with Python integration - devamazonaws.blogspot.com

You can now run graph analytics and machine learning tasks on graph data stored in Amazon Neptune using an open-source Python integration that simplifies data science and ML workflows. With this integration, you can read and write graph data stored in Neptune using Pandas DataFrames in any Python environment, such as a local Jupyter notebook instance, Amazon SageMaker Studio, AWS Lambda, or other compute resources. From there, you can run graph algorithms, such as PageRank and Connected Components, using open-source libraries like iGraph, Network, and cuGraph.

Post Updated on June 07, 2022 at 11:48PM

Comments

Popular posts from this blog

Scenarios capability now generally available for Amazon Q in QuickSight - devamazonaws.blogspot.com

Research and Engineering Studio on AWS Version 2024.08 now available - devamazonaws.blogspot.com

Amazon EC2 C6id instances are now available in AWS Europe (Paris) region - devamazonaws.blogspot.com